0040-4039(95)02147-7

α-Ketene Alkyl and α,β-Unsaturated Acyl Radical Intermediates in Ring Constructions

Christopher J. Hayes and Gerald Pattenden*

Department of Chemistry, Nottingham University, Nottingham, NG7 2RD, England

Abstract: Treatment of the $E-\alpha$, β -unsaturated selenyl esters 1 and 3a with Bu₃SnH-AIBN produces the corresponding cyclohexenones 2 and 7/8 respectively via presumed α -ketene alkyl radical intermediates. In a similar manner the cyclopropyl ester 9 leads to a mixture of 12 and 13, and the 2,7-diene selenyl ester 15 undergoes a novel bi-cyclisation producing the diquinane 17 in 76% yield.

Acyl radicals derived from saturated carboxylic acid derivatives, e.g. acid chlorides, selenides, cobalt salophens, S-acyl xanthates, and tellurides, are powerful synthetic intermediates which have been used widely in a range of carbo- and hetero-cyclic ring constructions. In earlier studies we have evaluated the consecutive cyclisations of a range of (5-, 9-, 13-) polyolefinic acyl radical intermediates, and demonstrated their scope in the synthesis of linear and angular fused 6-ring systems, including steroid ring structures. Our contemporaneous, complementary interests in the total syntheses of the neurotoxin lophotoxin and the PAF antagonist phomactin A, employing the macrocyclisation of an α , β -unsaturated acyl radical intermediate onto an alkene electrophore as a key strategem, have led us to evaluate some of the fundamental chemistry of α , β -unsaturated acyl radicals in some detail. In this communication we describe the synthesis of a range of geometrically pure E- α , β -unsaturated acyl selenides incorporating additional alkene unsaturation, and their radical-mediated cyclisations to 2-cyclohexenones and diquinanes implicating novel α -ketene alkyl radicals as key intermediates.

Thus, we first examined the chemistry of the E-unsaturated selenyl ester 1 derived from straightforward treatment of geranoic acid with N-phenylselenophthalimide and Bu₃P. ¹¹ When a solution of 1 in dry benzene was heated under reflux in the presence of Bu₃SnH and catalytic AIBN for 1.5h, work-up and chromatography led to a single product in 86% whose spectroscopic data were identical with the known odoriferous cyclohexenone monoterpene piperitone 2 found in oil of eucalyptus. ¹² In a similar manner, treatment of the E-

2, E-6 selenyl ester 3a, produced from farnesoic acid, with Bu₃SaH-AIBN under identical reaction conditions led to a 1:1 mixture of the sesquiterpene (±)-bisabolone 7 and its enimer 8. ¹³ in a combined yield of 71%. ¹⁴

The formation of the cyclohexenones 2 and 7, from the E-2 unsaturated acyclic selenyl esters 1 and 3a respectively, in the presence of Bu₃SnH-AIBN, is interesting. We believe the cyclohexenones are produced as a result of 6-exo-trig cyclisations of Z-2 unsaturated acyl radical intermediates, viz 6, produced from the corresponding E-2 acyl radicals 4 by way of the novel and unusual α -ketene radical species 5. ¹⁵ To give credence to this suggestion we examined the chemistry of the cyclopropyl acyl radical intermediate 10 produced from the selenyl ester 9 derived from chrysanthemic acid. ¹⁶ To our pleasure we found that when 9 was treated with Bu₃SnH-AIBN in hot benzene the major products were the γ , δ -unsaturated aldehyde 12a and the corresponding dimer 13a. Furthermore, when the same reaction was conducted in hot benzene containing 10% methanol, the product was the methyl ester 13b. ¹⁷ We believe that these data lend support to the intermediacy of the β - 11 and δ -ketene radicals 14 between the cyclopropyl acyl radical 10 and the observed products 12 and 13. Thus reduction of the ketene unit in 14¹⁸ (in benzene), preceeded by or followed by hydrogen abstraction or dimerisation, leads to 12a and 13a, whereas a similar sequence in MeOH involving ionic alcohol addition to the ketene moiety in 14 would lead to 13b.

As a corollary to the aforementioned studies, and as a prelude to further exploitations of the scope for α,β -unsaturated acyl radical intermediates in synthesis, we designed the 2,7-diene selenyl ester 15, ¹⁹ with a view to effecting a tandem cyclisation involving the α -ketene alkyl radical 18 and the ketene electrophore in

concert. Thus, to our satisfaction we found that when the 2,7-diene selenyl ester 15 was treated with Bu_3SnH -AIBN in hot benzene, it underwent a remarkably efficient bicyclisation producing a 2:1 mixture of MOM-ether epimers of the diquinane 17 in 76% yield. We suggest that the diquinane is produced via sequential formation of the α , β -unsaturated acyl 16, the α -ketene alkyl 18 and the alkyl radical 19 intermediates, involving successive 5-exo-trig and 5-exo-dig cyclisations, the latter involving cyclisation onto a ketene carbonyl electrophore leading to the enolate radical intermediate 29, ie 16 \rightarrow 18 \rightarrow 19 \rightarrow 20. Further work is now in progress to complement these studies and extend the scope of these novel radical cyclisations to alternative carbo- and hetero-cyclic ring constructions.

Acknowledgements

We thank Astra Charnwood for financial support, and for a Studentship to CJH.

References and Notes

- a) Cekovic, Z., Tetrahehdron Lett., 1972, 749; b) Walsh, Jr., E.J.; Messinger II, J.M.; Grudoski, D.A.; Allchin, C.A., Tetrahedron Lett., 1980, 21, 4409.
- a) Pfenninger, J.; Heuberger, C.; Graf, W., Helv. Chim. Acta, 1980, 63, 2328; b) Crich, D.; Fortt, S.M., Tetrahedron Lett., 1987, 28, 2895; c) Boger, D.L.; Mathvink, R.J., J. Org. Chem., 1988, 53, 3377; d) Crich, D.; Fortt, S.M., Tetrahedron Lett., 1988, 29, 2585; e) Crich, D.; Fortt, S.M., Tetrahedron, 1989, 45, 6581; f)Boger, D.L.; Mathvink, R.J., J. Am. Chem. Soc., 1990, 112, 4003; g) Boger, D.L.; Mathvink, R.J., J. Am. Chem. Soc., 1990, 112, 4008; h) Boger, D.L.; Mathvink, R.J., J. Org. Chem., 1990, 55, 5442; i) Boger, D.L.; Mathvink, R.J. J. Org. Chem., 1992, 57, 1429.
- 3. a) Coveney, D.J.; Patel, V.F.; Pattenden, G., Tetrahedron Lett., 1987, 28, 5949; b) Coveney, D.J.; Patel, V.F.; Pattenden, G.; Thompson, D.M., J. Chem. Soc., Perkin Trans. 1, 1990, 2721.
- 4. Delduc, P.; Tailhan, C.; Zard, S.Z., J. Chem. Soc.. Chem. Comm., 1988, 308.
- a) Chen, C.; Crich, D., Tetrahedron Lett., 1993, 34, 1545; b) Crich, D.; Chen, C.; Hwang, J-T.;
 Yuan, H.; Papadatos, A.; Walter, R.I., J. Am. Chem. Soc., 1994, 116, 8937.
- a) Crich, D.; Eustace, K.A.; Ritchie, T.J., Heterocycles, 1989, 28, 67;b) Evans, P.A.; Roseman,
 J.D., Tetrahedron Lett., 1995, 36, 31.
- 7. a) Chen, L.; Gill, G.B.; Pattenden, G., Tetrahedron Lett., 1994, 35, 2593; b) Batsanov, A.; Chen, L.;

- Gill, G.B.; Pattenden, G., J. Chem. Soc., Perkin Trans. 1, 1995, in press.
- 8. a) Astley, M.P.; Pattenden, G. Synlett.; 1991, 335; b) Astley, M.P.; Pattenden, G., Synthesis, 1992, 101.
- 9. Sugano, M.; Sato, A.; Iijima, Y.; Oshima, T.; Furuya, K.; Harumitsu, K.; Hata, T.; Hanzawa, H., J. Am. Chem. Soc., 1991, 113, 5463.
- a) Penn, J.H.; liu, F., J. Org. Chem., 1994, 59, 2608; b) Boger, D.L.; Mathvink, R.J., J. Org. Chem., 1992, 57, 1429; c) Montheard, J-P.; Delepine, M., C. R. Acad. Sc. Paris, 1965, 260, 577.
- 11. a) Nicolaou, K.C.; Petasis, N.A.; Claremon, D.A., *Tetrahedron*, 1985, 41, 4835; b) Grieco, P.A.; Jaw, J.Y.; Claremon, D.A.; Nicolaou, K.C., *J. Org. Chem.*, 1981, 46, 1215.
- 12. Melikyan, M.O.; Tatevosyan, G.T., J. Gen. Chem. USSR (Engl. Tran.), 1951, 21, 767.
- 13. Ghisalberti, E.L.; Jefferies, P.R.; Stuart, A.D., Aust. J. Chem., 1979, 32, 1627.
- 14. All new compounds showed satisfactory spectroscopic, mass spectrometry and/or elemental analysis data.
- 15. Erman, W.F.; Gibson, T.W., Tetrahedron, 1969, 25, 2493.
- 16. Arlt, D.; Jautelat, M.; Lantzsch, R., Angew. Chem. Int. Ed. Engl., 1981, 20, 703.
- 17. The authors would like to thank Nicola Herbert of this department for performing this experiment.
- 18. The reduction of the ketene in 14 under the reaction conditions may be explained as follows:

For other examples of tributylstannyl enolate generation via tributylstannyl radical additions to carbonyl compounds, see: a) Enholm, E.J.; Xie, Y.; Abboud, K.A., J. Org. Chem., 1995, 60, 1112; b) Enholm, E.J.; Jia, Z.J., Tetrahedron Lett., 1995, 36, 6819.

19. The cyclisation precursor 15 was synthesised from methyl geranoate as shown below:

Reagents: i, MCPBA, CH₂Cl₂, 90%; ii, HClO₄, THF/H₂O then KIO₄, 92%; iii, CH₂:CHMgCl, THF, 64%; iv, MOM-Cl, Hunigs base, CH₂Cl₂, 60%; v, LiOH, THF/H₂O, 93%; vi, NPSP, Bu₃P, CH₂Cl₂, -20°C, 62%.

(Received in UK 1 November 1995; accepted 10 November 1995)